
astara Documentation
Release 1.0

Akanda, Inc

December 16, 2015

Contents

1 Narrative Documentation 3
1.1 What Is Astara . 3
1.2 Service VM Orchestration and Management . 6
1.3 The Service VM (the Astara Appliance) . 12
1.4 Contributing . 17
1.5 Operation and Deployment . 17
1.6 Astara Developer Quickstart . 19
1.7 Configuration Options . 20

2 Licensing 21

i

ii

astara Documentation, Release 1.0

Astara is an open source network virtualization platform built by OpenStack operators for real OpenStack clouds.
Originally developed by DreamHost for their OpenStack-based public cloud, DreamCompute, Astara eliminates the
need for complex SDN controllers, overlays, and multiple plugins by providing a simple integrated networking stack
(routing, firewall, and load balancing via a virtual Service VM) for connecting and securing multi-tenant OpenStack
environments.

Contents 1

https://dreamhost.com
https://dreamhost.com/compute/cloud

astara Documentation, Release 1.0

2 Contents

CHAPTER 1

Narrative Documentation

1.1 What Is Astara

Astara an open source network virtualization solution built by OpenStack operators for OpenStack clouds.

Astara follows core principles of simple, compatible, and open development.

The Astara architecture is broken down by describing the building blocks. The most important of those building
blocks, the Astara Orchestrator, is a multi-process, multi-threaded Neutron Advanced Services orchestration service
which manages the lifecycle of the Neutron Advanced Services. Astara currently supports a layer 3 routing and load
balancing. Astara will support additional Neuton Advanced services such as VPN, and Firewalls in the open driver
model.

1.1.1 High-Level Architecture

Astara is a network orchestration platform that delivers network services (L3-L7) via service instances that provide
routing, load balancing, and eventually more. Astara also interacts with any L2 overlay - including open source
solutions based on OVS and Linux bridge (VLAN, VXLAN, GRE) and most proprietary solutions - to deliver a
centralized management layer for all OpenStack networking decisions.

In a typical OpenStack deployment, Neutron server emits L3 and DHCP messages which are handled by a variety of
Neutron agents (the L3 agent, DHCP agent, agents for advanced services such as load balancing, firewall, and VPN as
a service):

3

astara Documentation, Release 1.0

When we add Astara into the mix, we’re able to replace these agents with a virtualized Service Instance that manages
layer 3 routing and other advanced networking services, significantly lowering the barrier of entry for operators (in
terms of deployment, monitoring and management):

4 Chapter 1. Narrative Documentation

astara Documentation, Release 1.0

Astara takes the place of many of the agents that OpenStack Neutron communicates with (L3, DHCP, LBaaS, FWaaS)
and acts as a single control point for all networking services. By removing the complexity of extra agents, Astara
can centrally manage DHCP and L3, orchestrate load balancing and VPN Services, and overall reduce the number of
components required to build, manage and monitor complete virtual networks within your cloud.

Astara Building Blocks

From an architectural perspective, Astara is composed of a few sub-projects:

• astara <http://github.com/openstack/astara>

A service for managing the creation, configuration, and health of Astara Service Instances. The Orchestrator
acts in part as a replacement for Neutron’s various L3-L7 agents by listening for Neutron AMQP events and
coalescing them into software appliance API calls (which configure and manage embedded services on the
Service Instance). Additionally, the Orchestrator contains a health monitoring component which monitors health
and guarantees uptime for existing Service Instances.

• astara-appliance <http://github.com/openstack/astara-appliance>

The software and services (including tools for building custom service images themselves) that run on the
virtualized Linux appliance. Includes drivers for L3-L7 services and a RESTful API that is used to orchestrate
changes to appliance configuration.

• astara-neutron

1.1. What Is Astara 5

http://github.com/openstack/astara-neutron

astara Documentation, Release 1.0

Addon API extensions and plugins for OpenStack Neutron which enable functionality and integration with the
Astara project, notably Astara router appliance interaction.

• akanda-horizon

OpenStack Horizon rug panels

Software Instance Lifecycle

As Neutron emits events in reaction to network operations (e.g., a user creates a new network/subnet, a user attaches
a virtual machine to a network, a floating IP address is associated, etc...), Astara Orchestrator receives these events,
parses, and dispatches them to a pool of workers which manage the lifecycle of every virtualized appliance.

This management of individual appliances is handled via a state machine per appliance; as events come in, the state
machine for the appropriate instance transitions, modifying its configuration in a variety of ways, such as:

• Booting a virtual machine for the appliance via the Nova API

• Checking for aliveness of the Service Instance.

• Pushing configuration updates via the REST API to configure services (such as iptables, dnsmasq, bird6,
etc...).

• Deleting instances via the Nova API (e.g., when a router or load balancer is deleted from Neutron).

1.1.2 The Service Instance (the Astara Appliance)

Astara uses Linux-based images (stored in OpenStack Glance) to provide layer 3 routing and advanced networking
services. There is a stable image available by default, but it’s also possible to build your own custom Service Instance
image (running additional services of your own on top of the routing and other default services provided by the
project).

1.2 Service VM Orchestration and Management

1.2.1 Astara Orchestrator

astara-orchestrator is a multiprocessed, multithreaded Python process composed of three primary subsys-
tems, each of which are spawned as a subprocess of the main astara-orchestrator process:

1.2.2 L3 and DHCP Event Consumption

astara.notifications uses kombu and a Python multiprocessing.Queue to listen for specific
Neutron service events (e.g., router.interface.create, subnet.create.end, port.create.end,
port.delete.end) and normalize them into one of several event types:

• CREATE - a router creation was requested

• UPDATE - services on a router need to be reconfigured

• DELETE - a router was deleted

• POLL - used by the health monitor for checking aliveness of a Service VM

• REBUILD - a Service VM should be destroyed and recreated

6 Chapter 1. Narrative Documentation

http://github.com/stackforge/akanda-neutron
https://pypi.python.org/pypi/kombu

astara Documentation, Release 1.0

As events are normalized and shuttled onto the multiprocessing.Queue, astara.scheduler shards (by
Tenant ID, by default) and distributes them amongst a pool of worker processes it manages.

This system also consumes and distributes special astara.command events which are published by the rug-ctl
operator tools.

1.2.3 State Machine Workers and Router Lifecycle

Each multithreaded worker process manages a pool of state machines (one per virtual router), each of which represents
the lifecycle of an individual router. As the scheduler distributes events for a specific router, logic in the worker
(dependent on the router’s current state) determines which action to take next:

1.2. Service VM Orchestration and Management 7

astara Documentation, Release 1.0

AMQP

Event Processing + Scheduler

Worker 1 Worker ... Worker N

Nova Neutron

Thread 1 Thread ... Thread N

Nova API Neutron API

Service VM 1 Service VM ...

Appliance REST API

Service VM N

For example, let’s say a user created a new Neutron network, subnet, and router. In this scenario, a
router-interface-create event would be handled by the appropriate worker (based by tenant ID), and a
transition through the state machine might look something like this:

8 Chapter 1. Narrative Documentation

astara Documentation, Release 1.0

CalcAction Alive CreateVM CheckBoot ConfigureVM

State Machine Flow

The supported states in the state machine are:

CalcAction The entry point of the state machine. Depending on the current status of the
Service VM (e.g., ACTIVE, BUILD, SHUTDOWN) and the current event, determine the
first step in the state machine to transition to.

Alive Check aliveness of the Service VM by attempting to communicate with it via its REST
HTTP API.

CreateVM Call nova boot to boot a new Service VM. This will attempt to boot a Service
VM up to a (configurable) number of times before placing the router into ERROR state.

CheckBoot Check aliveness (up to a configurable number of seconds) of the router until the
VM is responsive and ready for initial configuration.

ConfigureVM Configure the Service VM and its services. This is generally the final step in
the process of booting and configuring a router. This step communicates with the Neutron
API to generate a comprehensive network configuration for the router (which is pushed
to the router via its REST API). On success, the state machine yields control back to the
worker thread and that thread handles the next event in its queue (likely for a different
Service VM and its state machine).

ReplugVM Attempt to hot-plug/unplug a network from the router via nova
interface-attach or nova-interface-detach.

StopVM Terminate a running Service VM. This is generally performed when a Neutron router
is deleted or via explicit operator tools.

ClearError After a (configurable) number of nova boot failures, Neutron routers are au-
tomatically transitioned into a cooldown ERROR state (so that astara will not continue
to boot them forever; this is to prevent further exasperation of failing hypervisors). This
state transition is utilized to add routers back into management after issues are resolved
and signal to astara-orchestrator that it should attempt to manage them again.

STATS Reads traffic data from the router.

CONFIG Configures the VM and its services.

EXIT Processing stops.

ACT(ion) Variables are:

Create Create router was requested.

Read Read router traffic stats.

1.2. Service VM Orchestration and Management 9

astara Documentation, Release 1.0

Update Update router configuration.

Delete Delete router.

Poll Poll router alive status.

rEbuild Recreate a router from scratch.

VM Variables are:

Down VM is known to be down.

Booting VM is booting.

Up VM is known to be up (pingable).

Configured VM is known to be configured.

Restart Needed VM needs to be rebooted.

Hotplug Needed VM needs to be replugged.

Gone The router definition has been removed from neutron.

Error The router has been rebooted too many times, or has had some other error.

10 Chapter 1. Narrative Documentation

astara Documentation, Release 1.0

START

CALC_ACTION

EXIT

ALIVE

ACT>[CRUP],vm:[UC]

CREATE_VM

ACT>[CRUP],vm:D

CHECK_BOOT

ACT>[CRUP],vm:B

REBUILD_VM

ACT:E

STOP_VM

ACT>D or vm:G

CLEAR_ERROR

vm:EACT:P,vm>[UC]

vm>D

vm:G

CONFIG

ACT:[CU],vm:[UC]

STATS

ACT:R,vm:C

vm:E

vm:D

ACT:[CRUDP],vm:[DBUCR]

vm:G

vm:[BCR]

vm:[DG]

vm>U

ACT:E,vm:D

vm!=[DG]

ACT:D,vm>D or vm:G

ACT:E or vm>D

no pause before next action

ACT>P,vm>C

vm>[RDG]

ACT:R,vm>C

REPLUG_VM

vm>[H]

ACT>P

vm>[R]

vm>[H]

1.2.4 Health Monitoring

astara.health is a subprocess which (at a configurable interval) periodically delivers POLL events to every known
virtual router. This event transitions the state machine into the Alive state, which (depending on the availability of the
router), may simply exit the state machine (because the router’s status API replies with an HTTP 200) or transition
to the CreateVM state (because the router is unresponsive and must be recreated).

1.2. Service VM Orchestration and Management 11

astara Documentation, Release 1.0

1.3 The Service VM (the Astara Appliance)

Astara uses Linux-based images (stored in OpenStack Glance) to provide layer 3 routing and advanced networking
services. Akanda, Inc provides stable image releases for download at akanda.io, but it’s also possible to build your own
custom Service VM image (running additional services of your own on top of the routing and other default services
provided by Astara).

1.3.1 Building a Service VM image from source

The router code that runs within the appliance is hosted in the astara-appliance repository at
https://git.openstack.org/cgit/openstack/astara-appliance. Additional tooling for actually
building a VM image to run the appliance is located in that repository’s disk-image-builder sub-directory, in
the form elements to be used with diskimage-builder. The following instructions will walk through building the
Debian-based appliance locally, publishing to Glance and configuring the RUG to use said image. These instructions
are for building the image on an Ubuntu 14.04+ system.

Install Prerequisites

First, install diskimage-builder and required packages:

sudo apt-get -y install debootstrap qemu-utils
sudo pip install "diskimage-builder<0.1.43"

Next, clone the astara-appliance repository:

git clone https://git.openstack.org/openstack/astara-appliance

Build the image

Kick off an image build using diskimage-builder:

cd astara-appliance
ELEMENTS_PATH=diskimage-builder/elements DIB_RELEASE=wheezy DIB_EXTLINUX=1 \
disk-image-create debian vm astara -o astara

Publish the image

The previous step should produce a qcow2 image called astara.qcow that can be published into Glance for use by
the system:

We assume you have the required OpenStack credentials set as an environment
variables
glance image-create --name astara --disk-format qcow2 --container-format bare \

--file astara.qcow2
+------------------+--------------------------------------+
| Property | Value |
+------------------+--------------------------------------+
checksum	cfc24b67e262719199c2c4dfccb6c808
container_format	bare
created_at	2015-05-13T21:27:02.000000
deleted	False
deleted_at	None
disk_format	qcow2

12 Chapter 1. Narrative Documentation

http://akanda.io

astara Documentation, Release 1.0

id	e2caf7fa-9b51-4f42-9fb9-8cfce96aad5a
is_public	False
min_disk	0
min_ram	0
name	astara
owner	df8eaa19c1d44365911902e738c2b10a
protected	False
size	450573824
status	active
updated_at	2015-05-13T21:27:03.000000
virtual_size	None
+------------------+--------------------------------------+

Configure the RUG

Take the above image id and set the corresponding value in the RUG’s config file, to instruct the service to use that
image for software router instances it manages:

vi /etc/astara/orchestrator.ini
...
[router]
image_uuid=e2caf7fa-9b51-4f42-9fb9-8cfce96aad5a

Making local changes to the appliance service

By default, building an image in this way pulls the astara-appliance code directly from the upstream tip of
trunk. If you’d like to make modifications to this code locally and build an image containing those changes, set
DIB_REPOLOCATION_astara and DIB_REPOREF_astara in your enviornment accordingly during the image build,
ie:

export DIB_REPOLOCATION_astara=~/src/astara-appliance # Location of the local repository checkout
export DIB_REPOREF_astara=my-new-feature # The branch name or SHA-1 hash of the git ref to build from.

1.3.2 REST API

The Astara Appliance REST API is used by the orchestrator service to manage health and configuration of services on
the router.

Router Health

HTTP GET /v1/status/

Used to confirm that a router is responsive and has external network connectivity.

Example HTTP 200 Response

Content-Type: application/json
{

'v4': true,
'v6': false,

}

1.3. The Service VM (the Astara Appliance) 13

astara Documentation, Release 1.0

Router Configuration

HTTP GET /v1/firewall/rules/

Used to retrieve an overview of configured firewall rules for the router (from iptables -L and iptables6 -L).

Example HTTP 200 Response

Content-Type: text/plain
Chain INPUT (policy DROP)
target prot opt source destination
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmptype 8

...

HTTP GET /v1/system/interface/<ifname>/

Used to retrieve JSON data about a specific interface on the router.

Example HTTP 200 Response

Content-Type: application/json
{

"interface": {
"addresses": [

"8.8.8.8",
"2001:4860:4860::8888",

],
"description": "",
"groups": [],
"ifname": "ge0",
"lladdr": "fa:16:3f:de:21:e9",
"media": null,
"mtu": 1500,
"state": "up"

}
}

HTTP GET /v1/system/interfaces

Used to retrieve JSON data about a every interface on the router.

Example HTTP 200 Response

Content-Type: application/json
{

"interfaces": [{
"addresses": [

"8.8.8.8",
"2001:4860:4860::8888",

],
"description": "",
"groups": [],
"ifname": "ge0",

14 Chapter 1. Narrative Documentation

astara Documentation, Release 1.0

"lladdr": "fa:16:3f:de:21:e9",
"media": null,
"mtu": 1500,
"state": "up"

}, {
...

}]
}

HTTP PUT /v1/system/config/

Used (generally, by astara-orchestrator) to push a new configuration to the router and restart services as
necessary:

Example HTTP PUT Body

Content-Type: application/json
{

"configuration": {
"networks": [

{
"address_allocations": [],
"interface": {

"addresses": [
"8.8.8.8",
"2001:4860:4860::8888"

],
"description": "",
"groups": [],
"ifname": "ge1",
"lladdr": null,
"media": null,
"mtu": 1500,
"state": "up"

},
"name": "",
"network_id": "f0f8c937-9fb7-4a58-b83f-57e9515e36cb",
"network_type": "external",
"v4_conf_service": "static",
"v6_conf_service": "static"

},
{

"address_allocations": [],
"interface": {

"addresses": [
"..."

],
"description": "",
"groups": [],
"ifname": "ge0",
"lladdr": "fa:16:f8:90:32:e3",
"media": null,
"mtu": 1500,
"state": "up"

},
"name": "",
"network_id": "15016de1-494b-4c65-97fb-475b40acf7e1",

1.3. The Service VM (the Astara Appliance) 15

astara Documentation, Release 1.0

"network_type": "management",
"v4_conf_service": "static",
"v6_conf_service": "static"

},
{

"address_allocations": [
{

"device_id": "7c400585-1743-42ca-a2a3-6b30dd34f83b",
"hostname": "10-10-10-1.local",
"ip_addresses": {

"10.10.10.1": true,
"2607:f298:6050:f0ff::1": false

},
"mac_address": "fa:16:4d:c3:95:81"

}
],
"interface": {

"addresses": [
"10.10.10.1/24",
"2607:f298:6050:f0ff::1/64"

],
"description": "",
"groups": [],
"ifname": "ge2",
"lladdr": null,
"media": null,
"mtu": 1500,
"state": "up"

},
"name": "",
"network_id": "31a242a0-95aa-49cd-b2db-cc00f33dfe88",
"network_type": "internal",
"v4_conf_service": "static",
"v6_conf_service": "static"

}
],
"static_routes": []

}
}

1.3.3 Survey of Software and Services

The Astara Appliance uses a variety of software and services to manage routing and advanced services, such as:

• iproute2 tools (e.g., ip neigh, ip addr, ip route, etc...)

• dnsmasq

• bird6

• iptables and iptables6

In addition, the Astara Appliance includes two Python-based services:

• The REST API (which astara-orchestrator) communicates with to orchestrate router updates), de-
ployed behind gunicorn.

• A Python-based metadata proxy.

16 Chapter 1. Narrative Documentation

http://gunicorn.org

astara Documentation, Release 1.0

1.3.4 Proxying Instance Metadata

When OpenStack VMs boot with cloud-init, they look for metadata on a well-known address,
169.254.169.254. To facilitate this process, Astara sets up a special NAT rule (one for each local network):

-A PREROUTING -i eth2 -d 169.254.169.254 -p tcp -m tcp --dport 80 -j DNAT --to-destination 10.10.10.1:9602

...and a special rule to allow metadata requests to pass across the management network (where OpenStack Nova is
running, and will answer requests):

-A INPUT -i !eth0 -d <management-v6-address-of-router> -j DROP

A Python-based metadata proxy runs locally on the router (in this example, listening on
http://10.10.10.1:9602) and proxies these metadata requests over the management network so that
instances on local tenant networks will have access to server metadata.

1.4 Contributing

1.4.1 Submitting Code Upstream

All of Astara’s code is 100% open-source and is hosted ‘on git.openstack.org
<https://git.openstack.org/cgit/openstack/astara/‘_ Patches are welcome!

1.5 Operation and Deployment

1.5.1 Installation

You can install from GitHub directly with pip:

$ pip install -e git://git.openstack.org/openstack/astara@stable/liberty#egg=astara

After installing astara, it can be invoked as:

$ astara-orchestrator --config-file /etc/akanda-rug/rug.ini

The astara service is intended to run on a management network (a separate network for use by your cloud operators).
This segregation prevents system administration and the monitoring of system access from being disrupted by traffic
generated by guests.

1.5.2 Operator Tools

rug-ctl

astara-ctl is a tool which can be used to send manual instructions to a running astara-orchestrator via
AMQP:

$ astara-ctl browse
A curses console interface for browsing the state
of every Neutron router and issuing `rebuild` commands

$ astara-ctl poll
Sends a POLL instruction to every router to check health

1.4. Contributing 17

astara Documentation, Release 1.0

$ astara-ctl router rebuild <router-id>
Sends a REBUILD instruction to a specific router

$ astara-ctl router update <router-id>
Sends an UPDATE instruction to a specific router

$ astara-ctl router debug <router-id>
Places a specific router in `debug mode`.
This causes the rug to ignore messages for the specified
router (so that, for example, operators can investigate
troublesome routers).

$ astara-ctl router manage <router-id>
Removes a specific router from `debug mode` and places
it back under astara-orchestrator management.

$ astara-ctl tenant debug <tenant-id>
Places a specific tenant in `debug mode`.
This causes the rug to ignore messages for the specified
tenant.
troublesome routers).

$ astara-ctl tenant manage <tenant-id>
Removes every router for a specific tenant from `debug mode`
and places the tenant back under astara-orchestrator management.

$ astara-ctl ssh <router-id>
Establishes an ssh connection with a specified Service VM.

$ astara-ctl workers debug
Causes the rug to print debugging diagnostics about the
current state of its worker processes and the state machines
under their management.

astara-orchestrator also exposes an RPC API on the management network, which allows non-interactive
astara-ctl commands to be issued via HTTP, e.g.,

$ curl -X PUT -g6 "http://[fdca:3ba5:a17a:acda::1]:44250/poll/"
$ curl -X PUT -g6 "http://[fdca:3ba5:a17a:acda::1]:44250/workers/debug/"
$ curl -X PUT -g6 "http://[fdca:3ba5:a17a:acda::1]:44250/router/rebuild/<ID>"

astara-debug-router

astara-debug-router is a diagnostic tool which can be used to analyze the state machine flow of any router and
step through its operation using Python’s debugger. This is particularly useful for development purposes and under-
standing the nature of the astara-orchestrator state machine, but it’s also useful for debugging problematic
routers as an operator; a common pattern for determining why a Service VM won’t boot is to place the router in debug
mode:

$ astara-ctl router debug <router-id>

...and then step through the handling of a manual UPDATE event to see where it fails:

$ astara-debug-router --router-id <router-id>

18 Chapter 1. Narrative Documentation

astara Documentation, Release 1.0

1.6 Astara Developer Quickstart

This guide provides guidance for new developers looking to get up and running with an Astara development environ-
ment. The Astara components may be easily deployed alongside OpenStack using DevStack. For more information
about DevStack visit http://docs.openstack.org/developer/devstack/.

1.6.1 Deploying Astara using DevStack

Preparation and prerequisites

Deploying DevStack on your local workstation is not recommended. Instead, developers should use a dedicated virtual
machine. Currently, Ubuntu Trusty 14.04 is the tested and supported base operating system. Additionally, you’ll need
at least 4GB of RAM (8 is better) and to have git installed:

sudo apt-get -y install git

First clone the DevStack repository:

sudo mkdir -p /opt/stack/
sudo chown `whoami` /opt/stack
git clone https://git.openstack.org/openstack-dev/devstack /opt/stack/devstack

Configuring DevStack

Next, you will need to enable the Astara plugin in the DevStack configuration and enable the relevant services:

cat >/opt/stack/devstack/local.conf <<END
[[local|localrc]]
enable_plugin astara https://github.com/openstack/astara
enable_service q-svc q-agt astara
disable_service n-net

HOST_IP=127.0.0.1
LOGFILE=/opt/stack/logs/devstack.log
DATABASE_PASSWORD=secret
RABBIT_PASSWORD=secret
SERVICE_TOKEN=secret
SERVICE_PASSWORD=secret
ADMIN_PASSWORD=secret
END

You may wish to SSH into the appliance VMs for debugging purposes. The orchestrator will enable access for the ‘as-
tara’ user for a specified public key. This may be specified by setting ASTARA_APPLIANCE_SSH_PUBLIC_KEY
variable in your devstack config to point to an existing public key. The default is $HOME/.ssh/id_rsa.pub.

Building a Custom Service VM

By default, the Astara plugin downloads a pre-built official Astara image. To build your own from source, enable
BUILD_ASTARA_APPLIANCE_IMAGE and specify a repository and branch to build from:

cat >>/opt/stack/devstack/local.conf <<END

BUILD_ASTARA_APPLIANCE_IMAGE=True
ASTARA_APPLIANCE_REPO=http://github.com/openstack/astara-appliance.git

1.6. Astara Developer Quickstart 19

astara Documentation, Release 1.0

ASTARA_APPLIANCE_BRANCH=master
END

To build the appliance using locally modified astara-appliance code, you may point devstack at the local git
checkout by setting the ASTARA_APPLIANCE_DIR variable. Ensure that any changes you want included in the
image build have been committed to the repository and it is checked out to the proper commit.

Deploying

Simply run DevStack and allow time for the deployment to complete:

cd /opt/stack/devstack
./stack.sh

After it has completed, you should have a astara_orchestrator process running alongside the other services
and an Astara router appliance booted as a Nova instance.

1.7 Configuration Options

astara-orchestrator uses oslo.config for configuration, so it’s configuration file format should be very
familiar to OpenStack deployers

20 Chapter 1. Narrative Documentation

CHAPTER 2

Licensing

Astara is licensed under the Apache-2.0 license and is copyright Akanda, Inc.

21

http://akanda.io

	Narrative Documentation
	What Is Astara
	Service VM Orchestration and Management
	The Service VM (the Astara Appliance)
	Contributing
	Operation and Deployment
	Astara Developer Quickstart
	Configuration Options

	Licensing

